UNIVERSITA DI MODENA E REGGIO EMILIA

Dipartimento di Ingegneria "Enzo Ferrari'

Master’s Degree in Computer Engineering
Data Engineering and Analytics

Enhancing Financial
Time Series Analysis

Design and Implementation of a Web Application
for Efficient Machine Learning Dataset Generation

Supervisor: Candidate:

prof. Francesco Guerra Vittorio Nutricato

External supervisor:

Roberto Landi - Axyon Al

Academic Year 2022-2023

II

111

To my family, my friends
and those who have been close to me

v

“Certo, chi nasce incatenato non sa che cosa é la liberta,

ma anch’egli sa cos’é il coraggio.

Un coraggio che tu nemmeno puoi immaginare.

1l coraggio di portare ogni giorno un carico pit pesante senza curvare le spalle,
il coraggio di continuare a vivere per sé, per chi si ama.”

Lo Scudo di Talos, Valerio Massimo Manfredi

VI

Acknowledgements

I am deeply indebted to Professor Francesco Guerra for his guidance and support through-
out my academic journey. He’s been a source of valuable advice, patiently steering me
through the complexities of my studies, even when the path ahead seemed shrouded in
uncertainty.

My heartfelt gratitude also extends to the Axyon Al team, who embraced me with open
arms and welcomed me into their vibrant community. Roberto Landi, my Axyon Al advisor,
has been an invaluable mentor, his constant support and insightful guidance instrumental
in shaping my professional growth. I would also like to mention Andrea Bisi and Davide
Brembilla from Axyon Al, thanking them for their patience and continuous commitment
in advancing this project with me.

In conclusion, I would like to express my sincere appreciation to several individuals who
have made an important contribution to my personal and academic adventure. For this
reason, I dedicate a heartfelt embrace to my entire family and friends, who have always been
by my side. As I reflect on my journey, I am overwhelmed with gratitude for the countless
individuals who have enriched my personal and academic life. I am forever grateful for
the unwavering support of those who have touched my life. Their contributions have been
instrumental in shaping my journey.

VII

VIII

Summary

The development of the web application "Talos" is a new project by Axyon Al company with
the main goal of simplifying the dataset generation process in "Datasmith" by leveraging
a user-friendly Graphical User Interface (GUI). Datasmith is the Axyon Al project aimed
at creating datasets useful for both model training and inference and internal company
experiments. Moreover, Talos will be used to track the main Datasmith activities, such as
the historical and live ingestion of Feature Groups on the AWS SageMaker Feature Store
directly from the web app panel. To generate a dataset, it is necessary to know several
properties:

e The investable universe we are considering, identified by the "Feed code"
o The types of included Instruments

o The Features to be included in the dataset

o The contextual Features for the dataset

e The time period the dataset should cover

» The target (for training datasets)

All the listed information and properties describing the dataset are included in a YAML
file that contains all the Feature Groups with their corresponding Features present in the
Feature Store. This YAML file represents the dataset "Genome" through which the actual
dataset can be generated once ready.

Generating the dataset Genome is currently a slow, error-prone, and semi-manual operation
due to the nature of the YAML file, which contains a long list of Features and Instruments.
Talos aims to expedite and strengthen the Genome generation process, providing Datasmith
users with a tool to monitor all major activities related to the Feature Store.

The web application comprises a backend developed using the Django framework, and a
frontend, developed thanks to the Nuxt framework.

In addition, the application is able to handle LDAP (Google) integration of Axyon Al users
and that of AWS for dataset generation.

Talos is implemented on the company’s internal server as a modification of the multidocker
solution currently adopted for other projects. Despite not using a serverless architecture, a
microservices/multidocker solution offers a simple way to achieve modularity and flexibility.

IX

Talos is a project that evolved during my internship and will have a future even afterwards
with new functionalities. The thesis project was therefore divided mainly into two phases:

o Lygos: development of a page that shows, for each Feed in production, the list of
Feature Groups that are part of it. The page includes an ingestion tracker showing
the ingestion status of Feature Groups in production and, for each Feature Group,
the list of Feeds utilizing it.

» Byzantium: Talos guides users through the process of generating the Genome of a
dataset, allowing them to choose Feature Groups, Features, Feed Code, and all the
previously listed properties.

Talos currently provides the user, directly from the graphical interface, with the opportu-
nity to generate a dataset with a one-day time interval in order to verify that the Genome
is consistent. The next phase after the thesis project includes the possibility of enabling
the generation of the complete dataset once the consistency of the test dataset is verified.

Sommario

Lo sviluppo dell’ applicazione web "Talos" & un nuovo progetto dell’azienda Axyon Al con
I’obiettivo principale di semplificare il processo di generazione dei dataset in "Datasmith"
sfruttando un’interfaccia utente user-friendly (GUI). Datasmith é il progetto di Axyon Al
mirato alla creazione di dataset utili sia per I'addestramento di modelli che per I'inferenza
e le sperimentazioni interne all’azienda. Inoltre, Talos verra utilizzato per tenere traccia
delle principali attivita di Datasmith, come l'ingestione storica e live dei Feature Group
sul Feature Store AWS SageMaker direttamente dal pannello della web app. Per poter
generare un dataset, € necessario conoscere diverse proprieta:

o L’universo investibile che stiamo considerando, identificato dal Feed Code
e Il tipo di Instrument inclusi

o Le Feature che vogliamo inserire nel dataset

e Le Feature di contesto per il dataset

o Il periodo temporale che il dataset dovrebbe coprire

o Il target (nel caso dei dataset di training)

Tutte le informazioni e le proprieta elencate, che descrivono il dataset, vengono incluse
in un file di tipo YAML che contiene tutti i Feature Group con le corrispondenti Feature
effettivamente presenti nel Feature Store. Questo file di tipo YAML rappresenta il "Genoma'
del dataset tramite il quale, una volta pronto, ¢ possibile generare il dataset reale.
Generare il Genoma di un dataset & attualmente un’operazione lenta, soggetta a errori e
semi-manuale a causa della natura del file di tipo YAML che contiene un lungo elenco
di Feature e Instrument. Talos mira a rendere il processo di generazione del Genoma piu
veloce e robusto, fornendo agli utenti di Datasmith uno strumento per monitorare tutte le
principali attivita relative al Feature Store.

La web application ¢ composta da una parte backend, sviluppata utilizzando il framework
Django, e da una frontend, sviluppata grazie al framework Nuxt. Inoltre 'applicazione &
in grado di gestire l'integrazione LDAP (Google) degli utenti Axyon Al e quella di AWS
per la generazione dei dataset.

Talos ¢ implementato sul server interno dell’azienda come modifica della soluzione mul-
tidocker attualmente adottata per altri progetti. Anche non utilizzando un’architettura
serverless, una soluzione microservizi/multidocker offre un modo semplice per raggiungere
modularita e flessibilita.

XI

Talos € un progetto che si e sviluppato nel corso del mio tirocinio ma avra un futuro
anche successivamente con nuove funzionalita. Il progetto di tesi e stato quindi suddiviso
principalmente in due fasi:

e Lygos: sviluppo di una pagina che mostra, per ciascun Feed in produzione, ’elenco
dei Feature Group che ne fanno parte. E presente anche un tracker di ingestione che
mostra lo stato di ingestione del Feature Group in produzione e per ciascun Feature
Group l'elenco dei Feed che lo utilizzano.

o Byzantium: Talos guida gli utenti attraverso il processo di generazione del Genoma
di un dataset, consentendo di scegliere i Feature Group, le Feature, il Feed Code e
tutte le proprieta precedentemente elencate.

Talos attualmente fornisce all’'utente, direttamente dall’interfaccia grafica, 'opportunita di
generare un dataset con intervallo temporale di un giorno al fine di verificare che il Genoma
sia consistente. La fase successiva al progetto di tesi prevede la possibilita di abilitare la
generazione del dataset completo, una volta verificata la consistenza di quello di test.

XII

Contents

List of Figures

Listings

List of Acronyms

1

Introduction

1.1 Presentation of Axyon AT
1.2 Contextualization of the project
1.3 Role and functions of Datasmith in Axyon AT
1.4 Objectives of Talos - web Datasmith
1.5 Tools o

Analysis and methodology

2.1 Work plan according to the Scrum methodology
2.2 Talos structure and architecture
2.3 Technologies and framework used - backend side
2.4 Technologies and framework used - frontend Side

Lygos implementation

3.1 Mockup of the page in the web application
3.2 Feed monitoring
3.3 Feature Groups ingestion tracker
3.4 Feature Groups composition

Byzantium implementation

4.1 Mockup of pages in the web application

4.2 Structure of a dataset Genome

4.3 Dataset Genome generation overview

4.4 Genome generation process
4.4.1 Step 1: Feed selection,
4.4.2 Step 2: instrument related Features selection
4.4.3 Step 3: instruments mapping selection
4.4.4 Step 4: context Features selection
4.4.5 Step 5: custom context Features selection
4.4.6 Step 6: context assets selection

XIII

XV

XVII

XIX

SOl W= =

10
12
14

17
17
19
20
22

4.4.7 Step 7: target selection

4.4.8 Step 8&:recap
4.5 Test dataset generation Lo L

5 Achieved results

5.1 Evaluation of the proposed solutions

5.2 Comparison: initial objectives versus results

6 Conclusions & future prospects
A Codebase structure

B Django models

C Django urlspatterns

References

XIV

45
45
47

49

o1

52

59

56

List of Figures

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

how Axyon Al works [1] oo 2
how Amazon SageMaker works [3]o 3
Scrum framework [10]o Lo 8
monolithic deployment vs microservice approach [11] 10
Django MVT architecture [13] 12
universal Nuxt JavaScript architecture [16] 14
mockup of the monitoring page L. 17
Feeds monitoring section Lo oL 19
Feature Groups ingestion tracker section 21
Feature Group composition section 23
Genome generation index page 25
Genome generation step 1 oL 26
Feature selection step 2,4,5,7 26
Genome structure in a .yaml file 29
dataset Genome generation overview table 0. 30
Genome preview with "Check" action 31
step 1 - create Genome 33
step 2 - instrument-related Features selection 35
step 3 - Instruments mapping selection 36
step 4 - context Features selection L. 37
step 5 - custom context Features selection 38
step 6 - context assets selection 39
step 7 - target selection 40
step 8-Tecap 41
"Check" action - test dataset, 43

XV

XVI

Listings

3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
B.1
C.1
C.2

fetch of lygos.vue page in Vuejs 19
Django view 'fg_ingest" in Python 20
OpenPopup method of lygos.vue page in Vue.js 22
Django view 'fg_details" in Python 000000 22
Django Model in Python - bizantium directory 30
create-genome.vue iImports oL Lo oo 32
feature selection Django view L. 34
test_dataset Django view 42
Django models in Python code - common directory 52
urls.py in Python code - lygos app Django 55
urls.py in Python code - byzantium app Django 95

XVII

XVIII

List of Acronyms

ML Machine Learning

AT Artificial Intelligence
GUI Graphical User Interface
UI User Interface

FG Feature Group

ORM Object Relational Mapping

XIX

XX

Chapter 1

Introduction

This chapter will initially provide an overview of Axyon Al, the company where my in-
ternship was conducted, describing its structure and goals. Subsequently, the reader will
be given a general overview of the project, starting from the context that gave rise to the
need to carry it out as a thesis project, up to the definition of its phases, the goals to be
achieved, and the tools used.

1.1 Presentation of Axyon Al

Axyon Al is an Italian fintech company based in Modena, committed to making the invest-
ment management industry more robust through the power of Al. The company provides
Al-based solutions to asset managers, hedge funds, and institutional investors, generating
predictive insights and identifying alpha opportunities.

Axyon Platform, the company’s proprietary platform, is specifically designed for financial
time series. It enables the design and development of extremely accurate AI/Deep Learning
predictive models. Axyon IRIS, the product offered to the market, is an AI/Deep Learning
engine utilizing proprietary technology to consistently provide precise forecasts for the
behavior of indices and securities.

As reported on the company’s official website [1], Axyon’s focus is not on individual models
but on designing and implementing a highly performant, efficient, and automated assembly
line for strategy production. This process evolves over time through incremental improve-
ments. Currently, Axyon IRIS strategies are powered by sets of supervised learning models,
including neural network-based models and tree-based models. Initially, a large number of
candidate models are explored using a hyperparameter search algorithm. Subsequently,
these models are optimally combined to form a set of Al models used for generating his-
torical (out of sample) forecasts and, ultimately, for production.

Various types of data from multiple sources are employed in the process. The primary
data types used to create datasets include end of day (EOD) and intraday market data,
fundamental indicators, macroeconomic indicators, related indices or securities, sentiment
indicators extracted from news and social media, options data, and analyst forecasts.

1

1 — Introduction

The feature selection and hyperparameter optimization process employed for model de-
velopment involve an in-depth exploration of the search space, whose dimensions depend
mainly on the complexity of the dataset and modeling assumptions, determining the set
of Al models available to the search algorithm. In most cases, a thorough exploration of
this space is computationally unfeasible, necessitating the use of a stochastic optimization
method to optimize hyperparameters and feature subsets.

o .
2L,
s, ;
> (=} - '
Ao, .. -
@o)
w -
° 2" »
<2, Yo 9
> %, 0 28 ¢ <4 ®
% e %0 o,
o .. L] (J—\;‘tq(
s PY 5
[]

PN <,
T Qe
e, 20
"7»/0 Qo<
“1 <1,

Figure 1.1: how Axyon AI works [1]

In the figure 1.1, the company’s workflow is visually represented, illustrating how data is
leveraged and transformed into possible future investment decisions.

In particular, we are talking about Al signals closely correlated to an investable universe,
which must be defined as the initial step in the construction of a new strategy, namely a
new Axyon IRIS Feed.

The investable universe defines the set of potentially tradable assets. A static investable
universe never changes after its definition. A dynamic investable universe may alter daily
based on specific market rules. Axyon Al employs two types of investable universes:

o Customized investment universes tailored to client requests

o Investment universes aligned with product development choices

The project undertaken during the internship has had an impact on the third step: "Dataset
Preparation', more precisely on the process of generating datasets used in the pipeline.

1 — Introduction

1.2 Contextualization of the project

As previously highlighted, the data used in the process of generating datasets, imperative
for model development, are of different types and come from multiple sources. All these
data are collected and stored within an Amazon S3 Data Lake.

Amazon Simple Storage Service (Amazon S3), as mentioned in Amazon S3 website [2], is
an object storage service that offers industry-leading scalability, data availability, security,
and performance. Customers of all sizes and industries can store and protect any amount
of data for any use case, such as data lakes, cloud-native applications, and mobile apps.
With convenient storage classes and user-friendly management features, it’s possible to op-
timize costs, organize data, and configure optimal access controls to meet specific business,
organizational, and compliance requirements.

The data residing in the data lake undergo processing and validation during the data
preparation phase, where any anomalies are rectified through structural adjustments, and
missing data is addressed. After data preparation, the data are cleaned and ready to
be transformed and engineered to create Features. Consequently, it becomes imperative
for Axyon AI that this data, stemming from the Features selection process, maintains
consistent storage and structuring within the Amazon SageMaker Feature Store.

In particular, the resulting Features are grouped based on characteristics and application
into Feature Groups.

Amazon SageMaker Feature Store, as stated on the dedicated website [3], is a dedicated and
fully managed repository for storing, sharing, and managing Features for machine learning
models. Features serve as inputs for ML models during training and inference, and their
quality is crucial for ensuring the creation of a highly accurate model. SageMaker Feature
Store provides a secure and unified store to process, standardize, and use Features at scale
throughout the machine learning lifecycle.

[u} v s
O 0o | i >’
Streaming data sources J—— AN =
o =
E.g. Amazon Kinesis Y Real time feature lookup
Data Streams for inference Inference
N s Mak % Offline feature lookup
mazon SageMaker for training
[u] Feature Store Feature catalog
Jo Search and reuse
O O | ML features Serve

Batch data sources
E.g. Amazon S3, Training
Amazon Redshift

Figure 1.2: how Amazon SageMaker works [3]

Once the Feature Groups find their place on AWS, the final step to conclude the data prepa-
ration phase is the formulation of datasets tailored for model training and experimentation
within the company. This commences with the careful selection and determination of which
Features from the Feature Store are to be incorporated into the dataset.

3

1 — Introduction

1.3 Role and functions of Datasmith in Axyon Al

The context in which Talos web application operates is the one just described and is
implemented within Axyon Al business process through Datasmith, the project aimed
at creating datasets. Datasmith puts into practice all the steps that make up the data
preparation phase, specifically:

+ Reads raw data from the Datalake (S3 bucket).
o Computes Features on the read data.
o Creates, updates, or deletes Feature Groups hosted on AWS SageMaker Feature Store.

o Generates datasets by retrieving updated time series of Features from the Feature
Store, combining them into a dataset based on a configuration file.

At the implementation level, in the Datasmith codebase, a class is created for each Fea-
ture Group, which will then be deployed to AWS SageMaker allowing all Features to be
specified within the class. Each class contains a method for each Feature that needs to be
implemented within the Feature Group.

There are level 0 Features that do not require any other Feature to be calculated but only
need data from the data lake, and higher level Features that instead need to be able to use
lower level features in order to be processed and inserted on AWS.

Datasmith can recognize the level of Features through the presence of a decorator associated
with the method that defines them, so that the Features can be processed in order of level.
There are two types of Feature Groups:

o Instrument-related: the value of instrument-related Features changes for each date
and for each Instrument. Instrument-related Features may or may not be associated
with a Feed Code (Axyon IRIS Feed).

o Context: a context Feature value changes for each date but remains the same for
each Instrument on that specific date. Each context Feature is associated with a Feed
code.

In the case that there are Features associated with a Feed code, then the Features without
Feed code will be processed first, in order of level, and then the Features with Feed code.

The information about Feature Groups, collected or produced by Datasmith, is stored
within a series of tables with the prefix "sn_ datasmith" that were critical to the develop-
ment of Talos. In particular, the Datasmith tables used during the internship, and which
I will explore in more detail during the thesis, are:

o sn_datasmith_feeds_in_ feature groups
o sn_ datasmith_feature groups

o sn_ datasmith_feature_group_ types

1 — Introduction

1.4 Objectives of Talos - web Datasmith

The reason that led Axyon Al to develop Talos project is to create a web application capable
of monitoring and supporting the dataset generation process managed by Datasmith.

1) The primary objective of the application is to monitor the historical and live ingestion
of Feature Groups into the AWS SageMaker Feature Store. This will make information
available and clear to all Datasmith users during the process, and will make it easier to
identify any errors in the ingestion of historical and especially live data.

The generation of each dataset is based on the previous creation of a configuration file,
referred to in the company’s process as the dataset "Genome'. All the information and
properties describing the dataset are then encapsulated in a YAML file representing the
dataset Genome. Once prepared, this Genome serves as the basis for generating the ac-
tual dataset. Creating the dataset Genome is currently a slow and semi-manual operation
prone to error due to the nature of the YAML file containing a lengthy list of Features
and Instruments. Presently, users of Datasmith choose and input the properties into the
configuration file without any support.

2) Talos aims to make the Genome generation process more efficient and robust by pro-
viding Datasmith users with a tool for the selection and configuration of all properties
necessary for creating the final dataset. Additionally, Talos also aims to provide a dataset
content verification tool, allowing for the analysis of the financial time series within it.

The overarching goal is therefore to develop a web application that can improve the effi-
ciency of the dataset generation process for machine learning, ensuring an enhanced anal-
ysis of financial time series at Axyon Al and, more broadly, an improvement in the overall
workflow of the company shown in figure 1.1.

1 — Introduction

1.5 Tools

For the planning and design of the tasks to be carried out during the internship, two
highly useful tools were employed: Jira [4], a software development tool utilized as a team
for project management, and Moqups [5] for idea sharing and visual collaboration.

At the code level, the web application consists of a backend, developed in Python using
the Django framework, and a frontend, crafted with the Nuxt framework in JavaScript.
As for accessing data in the company databases, SQL (Structured Query Language) was
utilized.

Talos is implemented on the company’s internal server as a modification of the current
multi-docker solution adopted for other projects. As stated in Docker documentation [6],
a container is a standard software unit that encapsulates code and all its dependencies
so that the application can run quickly and reliably from one computing environment to
another. A Docker container image is a lightweight, standalone, and executable software
package that includes everything needed to run an application: code, runtime, system tools,
system libraries, and settings. Therefore, two separate Docker containers were created, one
for the backend and a second for the frontend, which are initialized together through a
docker-compose. This solution facilitated modularity and flexibility for the project.

As mentioned earlier, it was necessary to consult and use various tables, accessing existing
MySQL databases within the company but also creating a specific one for the web appli-
cation. DBeaver [7], a cross-platform database tool supporting all major SQL databases
such as MySQL and SQLite, has been highly useful for this purpose.

Like all Axyon AI projects, a Git repository was created for Talos on the GitLab web
platform, enabling collaborative work and sharing among multiple contributors. GitLab
[8] is a version control system that allows saving code in public or private repositories
and supports operations like pull (download the code stored in the remote repository
locally), push (upload changes made locally to the public repository), and merge (combine
proposed changes with the original code). This way, collaboration with other programmers
was possible while working independently, avoiding conflicts.

Chapter 2

Analysis and methodology

From the very first day of the internship, the development of Talos was fully integrated
into the company’s DevOps process, taking shape as a new Epic in the Axyon Ai Gantt
chart on the Jira team collaboration platform.

This chapter provides a detailed explanation of the methodology used to advance the
project and the decisions made during the design phase.

2.1 Work plan according to the Scrum methodology

The working approach adopted by Axyon Al and consequently the strategy used in the
development of Talos, follows the Scrum methodology: a framework for developing and
supporting complex products created by Ken Schwaber and Jeff Sutherland. Its aim is to
support individuals and teams in collaboratively creating value.

Axyon Ai chooses to embrace the Scrum methodology primarily because it aligns with a
simple but foundational idea of the corporate vision: achieving goals as a team by breaking
down the work into small pieces, constantly experimenting with new solutions, and col-
lecting feedback along the way to improve over time, both as individuals and as a team.
Additionally, this framework provides an appropriate structure to allow diverse individu-
als to integrate into the way they work without disrupting individual characteristics and
specific needs, which are the assets of every development team.

The values of this framework such as courage, focus, commitment, respect and openness,
are all elements that members of a work team should pursue and become particularly
important in contexts in which the experiment is essential to make progress, just like the
context by Axyon Al

Scrum operates as an empirical process, making decisions grounded in observation, hands-
on experience, and a spirit of experimentation. It is built on three pillars: transparency,
inspection and adaptation which support the concept of working iteratively through small
experiments and adapting both what you are doing and how you do it as needed.

Getting down to specifics, however, thanks to the Scrum guide provided by the creators of
the framework in 2020 [9], we can define the components and phases of this methodology,
which precisely describe what happened during my internship.

7

2 — Analysis and methodology

Sprint
Retrospective

Product
Goal

Product
Backlog
Refinement

Definition
of Done

Sprint
Goal
Sprint Sprint
Planning Review
Product Sprint Increment
Backlog Backlog

Serum Framewsrk © 3020 Senum.arg

Figure 2.1: Scrum framework [10]

As highlighted in the representation 2.1, the Scrum framework comprises a Team, a Product
Owner, a Scrum Master and developers with specific responsibilities. The Scrum Team
participates in five events and generates three artifacts during a period of activity called
Sprint, lasting two weeks in Axyon.

Scrum includes the role of a Scrum Master to foster an environment in which the Product
Owner organizes the work related to a complex problem. Over the course of the Sprint,
the Scrum Team transforms a portion of the work into an Increment of value.

Finally, the Team, together with the stakeholders, reviews the results and adapts the work
for the next Sprint. Regarding the methodology applied in the development of Talos, the
internship covered about ten Sprints, each with distinctive characteristics.

1) Main players of the Sprints:

o The Scrum Team constitutes the fundamental entity of the Sprint. While carrying
out a project like Talos, assigned mainly to me, I have always been part of a team of
around five people, a size small enough to guarantee agility and productivity.

e Developers are the team members responsible for pursuing the Sprint objectives.

o The Product Owner is responsible for each team’s outcome during the Sprint and
manages the Product Backlog on the Jira software platform. In Axyon Al there are
two Product Owners, one for the business side and one for the technical side.

e The Scrum Master is the person responsible within the team for promoting and
implementing the Scrum methodology, acting as a connection between the team and
the Product Owners.

2) Main and recurring Sprint events:

o The Sprint constitutes the heart of the Scrum methodology, serving as a container
for the other events. It is what allowed me to have short/medium term objectives and
to constantly evaluate and improve the work done.

8

2 — Analysis and methodology

e Sprint Planning starts the Sprint. It took place every two weeks, on Mondays,
during the entire internship period and is divided into two moments: an initial meeting
managed by the Product Owners and an actual planning session during the day.
During this phase, the various Sprint Goals that each team must pursue are defined
and assigned. For Talos, I was almost always responsible for a Sprint Goal.

o The Daily Scrum is a meeting aimed at monitoring progress towards the Sprint
Goal and in which to organize ourselves as a team on daily work.

e The Sprint Review, divided between the business aspect and the technical aspect for
Axyon Al aims to analyze the results of the Sprint and determine future adaptations.
The Scrum Team presents the key results of their work to stakeholders and discusses
progress towards the Product Goal.

o The Sprint Retrospective serves to identify possible improvements in the quality
and effectiveness of the Sprint, allowing each Scrum Team to analyze every aspect of
the methods adopted in the just concluded Sprint.

3) Sprint Scrum artifacts, designed for transparency and collaboration:

o The Product Backlog is a list of needs to improve the company product. In Axyon,
it is represented in a Gantt chart on the Jira software platform, where it is possible
to insert Epics (Product Goals), but also individual stories and tasks to complete.
From the beginning, Talos was listed as an Epic scheduled between September and
January.

o The Sprint Backlog is a plan developed by and for Developers in each Sprint. In
particular, it was my job, together with other developers, to define the Goal on Talos
for each Sprint.

e The Increment represents the added value of the Sprint by each team.

Respecting the Scrum methodology just described, the first phase of the development of
Talos was the design and definition phase of the Epic, which had already been planned
before my internship, but which took shape and structure in the first Sprints of September.

2 — Analysis and methodology

2.2 Talos structure and architecture

As already mentioned in the introductory chapter, Web Datasmith is deployed on Axyon
AT’s internal server using a microservices/multidocker solution, a choice already adopted
for other projects. This architectural approach is preferred over the strictly monolithic one
as it allows achieving modularity and flexibility, optimizing the use of resources and not
excluding the possibility of creating new services in the future.

Monolithic deployment approach Microservices application approach

» Atraditional application has App 1 + A microservice application App 1 App 2
most of its functionality within a segregates functionality into r/’"‘"“\ (’6’"\
few processes that are separate smaller services. i i
componentized with layers and + Scales out by deploying each 3 ! i . i
libraries. service independently with L] N . |

« Scales by cloning the app on multiple instances across T T
multiple servers/VMs servers/VMs

(2]

B = o0
J/ Coarse-grained @ @
density of

@ (Iﬁ apps/services

Ol (el .0 (]
EI [Need to deploy . . .
e the full @ =
application
e e

Figure 2.2: monolithic deployment vs microservice approach [11]

Docker, an open source software developed in the Go programming language, facilitates the
deployment of containerized software systems. These containers encapsulate the application
and all its dependencies, allowing for flexible execution in any environment.

To automate the deployment process and reduce the need for operators with high permis-
sions, an automated deployment pipeline was implemented. Docker represents a de facto
standard for systems such as the one proposed in Talos.

Additionally, Docker provides tools like Docker Compose, which allows the definition and
management of multi-container applications. The architecture of the internal web app
Talos, implemented with Docker, consists of a container for the frontend and one for the
backend, and can be outlined by considering the following aspects:

1) Frontend container:

o This Docker container encloses the code for the frontend of the application, including
HTML, CSS, and JavaScript files.

o Based on a Node.js image, designed to deliver fast and scalable server-side applications
and networking.

» Communicates with the backend through HTTP requests or APIs.

10

2 — Analysis and methodology

2) Backend container:

o This Docker container hosts the backend of the application, including the web server,
business logic, and database connection.

o Built upon a base image from Axyon projects, containing the runtime system for the
Python programming language.

o Copy and install the Datasmith project inside the datasmith submodule, thus allowing
the management of dataset generation as previously illustrated in the chapter.

o Set up your AWS credentials to grant access to the AWS SageMaker Feature Store
and S3 bucket.

o Exposes an API used by the frontend to communicate with the backend.
3) Deployer container:

o This Docker container is a service that implements an automated deployment pipeline.
The service is based on a Python image and uses Flask to implement the pipeline.

4) Talos network:

o The Talos network is a bridge-type Docker network called "talos-network". The net-
work is used to connect the web app containers.

5) Communication between frontend and backend:
o The frontend sends requests to the backend through HTTP API calls.

o The backend processes the requests, accesses the necessary data, and returns responses
to the frontend.

6) Dependency management and isolated environments:

o Each container has its dependencies and libraries, isolated from the host system and
other containers, ensuring a cohesive and easily replicable environment.

» Configurations and environment variables are managed through specific Docker con-
figuration files.

» Replicating containers across different machines is facilitated to ensure flexibility and
scalability.

In the appendix A it is possible to observe the structure of the project codebase in its
entirety, with the subdivision of the various containers and all the necessary configuration
files, with particular reference to the docker-compose, which manages the creation of the
various environments. The two architectural blocks on which I mainly worked during the
internship are the two sides of the web application, backend and frontend.

11

2 — Analysis and methodology

2.3 Technologies and framework used - backend side

To implement the backend side of Talos, as a team we opted to use the Django framework,
known as "The web framework for perfectionists with deadlines".

Django is an open source web framework, written in Python, which stands out for its
completeness and power. This choice was motivated by Django’s ability to manage the
development of complex and highly scalable web applications.

The preference fell on this framework not only for its intrinsic characteristics, but also
because thanks to its active community and its widespread adoption in projects of different
complexities, it presents extremely complete documentation.[12]

Django adopts a specific version of the MVC (Model View Controller) architecture called
Model View Template (MVT). This structure divides the framework logic into three main
components: data management (Model), presentation logic (View), and flow control (Tem-
plate). This approach makes Django extremely flexible and reusable.

~ e

-~ .

RO
s Model
o® (Database Layer)
wedss con®
&y 0
&= TR
P: e 0%
e opet®
HTTP request View 0% & et

e ————————
Browser r—— s oraiaton
i preparation Layer)
(containing the requested page) Dyng, . HTML |

Yam;,.
Day, - T —
oo “"bEnapu,ar é \
User inp, 9
Y ey "
™S Flliog Template

(Presentation Layer)

Figure 2.3: Django MVT architecture [13]

In Django’s conception, the Controller corresponds to the framework itself, while the Views
do not determine how data should be displayed, but rather which data should be displayed.
The presentation process is defined in the Templates. However, in Talos, we handled the vi-
sualization on the frontend side using another framework, and therefore Django Templates
were not employed.

As for data management, Django provides an integrated ORM that simplifies interaction
with the database. Object Relational Mapping represents a programming technique that
facilitates the integration between software systems based on the object-oriented program-
ming paradigm and RDBMS relational database management systems. Thanks to Django
it is therefore possible to define data models in Python, and the framework automatically
takes care of the creation or modification of tables in the database as well as CRUD (Create,
Read, Update, Delete) operations.

A Django Model defines the structure and behavior of the data necessary for the opera-
tion of the web application. Generally, each Model is mapped to a single database table,
which is why in Talos we have taken the approach of creating a backend model for each
table used. In practice, each Model is implemented as a Python class that inherits from

12

2 — Analysis and methodology

the django.db.models.Model class. Each attribute of the class represents a database field,
defining the data type and all its properties.

After defining or modifying a Model, Django offers the ability to generate "Migrations',
which represent changes to the database schema or a single table. These migrations can
be applied to the database to reflect changes made to the models. Once data models are
created, Django also provides a database abstraction API that allows you to make complex
queries without writing direct SQL, with the use of "QuerySets".

If the models deal with the management of data in the database, the presentation logic
(View) is the fundamental element for managing user requests and determining how to
respond to each request. This process involves two main components: the routing system
and the views:

o The routing system, or URL configuration, determines how URLs are mapped to views
within a Django application. The main file that handles the mapping is commonly
called urls.py and is responsible for routing URL requests to the corresponding views.

o On the other hand, views are responsible for handling URL requests specified in the
routing system and can return HTML pages, JSON data, or perform other actions.
Views can be implemented as Python functions or classes and when a URL config-
uration is requested, Django determines which view to call based on the established
configurations.

In summary, the routing system and views in Django allow to specify the way in which URL
requests must be handled, directing the flow to the corresponding views that determine
what must be shown or executed in response to a specific request arriving from the frontend
side of the application.

13

2 — Analysis and methodology

2.4 Technologies and framework used - frontend Side

To create the Talos user interface, as a team we chose to adopt Nuxt, an open source
framework based on Vue.js, known as "The Intuitive Vue Framework".

Nuxt goes beyond the core functionality of Vue.js, extending its versatility and greatly
simplifying the creation of sophisticated applications. This is made possible thanks to a
convention management system, which offers predefined structures for crucial aspects such
as automatic routing and server-side rendering (SSR). This approach allowed me to focus
on the application logic without having to deal with complex configurations, thus speeding
up the development process and improving code consistency.

Before exploring Nuxt, it is essential to understand the fundamental role of Vue.js.

Vue is a progressive framework [14] designed for creating dynamic user interfaces, based
on the standard HTML, CSS and JavaScript languages. Its philosophy is founded on a
declarative programming model, offering a clear and intuitive approach to structuring
applications in a modular way. What primarily guided our decision to use Vue was above
all its incremental nature, a feature that will allow the web application to evolve over time
with new functionalities.

The Nuxt framework, as reported in the official documentation [15], therefore successfully
integrates all the advantages offered by Vue, creating a web development environment
enriched with distinctive features and strengths:

o The philosophy of Nuxt.js is based on the concept of conventions, which translate
into an organized and easily understandable project structure. This approach favors a
rapid learning curve and facilitates collaboration between developers, a characteristic
that has been confirmed with the positive experience obtained through Talos.

o Server-Side Rendering is a key feature that provides the ability to render pages server-
side before sending them to the client. This aspect allows the complete rendering of
pages before they reach the user’s browser, significantly improving the user experience
and facilitating indexing by search engines.

1. First Request
Goes To Node Server

3. Server Returns

Full HTML Page

4. Browser Renders Page,
Then JavaScript Hydrates
Single Page Application

2. Server Loads
Necessary Data
From API

5. Subsequent Pages Load Data
Directly From API,

API Server Render On Client

Figure 2.4: universal Nuxt JavaScript architecture [16]

14

2 — Analysis and methodology

o Automatic Routing greatly simplifies route management through an automatic sys-
tem based on folder and file conventions. It was therefore easy to organize the code
in an intuitive way by having the corresponding routes dynamically generated by
the framework itself. This approach minimizes the need for manual configurations
allowing for faster, more cohesive development.

To complete the panorama of technologies employed in developing the frontend of the web
application, it was decided to integrate the Vuetify design framework into the Vue.js and
Nuxt.js ecosystem.

Vuetify [17] is a complete user interface framework built right on top of Vue.js, designed to
provide a rich set of predefined Ul components that respect Google’s material design princi-
ples. Its Vue.js specific design allows for seamless integration with Vue’s state management
system, leveraging the framework’s reactive capabilities for dynamic state management.
The vast range of ready to use components, including buttons, cards, navigation bars and
forms, guaranteed the project flexibility and customization, significantly simplifying the
development of Talos.

The synergistic integration of Nuxt.js, Vue.js and Vuetify in the frontend of the web appli-
cation represented a decisive step in the development path of the project. The combined
use of these technologies has provided a solid foundation for the creation of a modern, re-
sponsive user interface that combines the required performance with well structured code
and an appealing user interface

15

16

Chapter 3
Lygos implementation

As reported in the chapter 1, the first reason that leads to the need for Axyon Al to
develop Talos is to easily consult the availability of Features within the AWS Feature Store
through a Graphic User Interface. This enables the information to be accessible and clear
to all the protagonists of the business process. The implementation of these functionalities
throughout the project is referred to as "Lygos" and is described in this chapter.

3.1 Mockup of the page in the web application
Initially, during the Lygos implementation phase of the project, together with the Axyon

Al team we developed a mockup for the interface, trying to incorporate all the properties
necessary for the correct functioning of the Feature Store tracking page.

€ > € @& www.talos.axyon.ailygos

Fg_name
Click on Fg_X -> Opens popup
Feature Name Feature Type Level

Feature_1 Type_1

Feature_2 Type_2

Feature_3 Type_1

Feature_4 Type_3
« Green: Ingest success

Red: Ingest Failed
« Grey: Ingest not done

FG_Name Feeds Historic “o Live @
A
Fq 1 Feed_code_1 . . YYYY-MM-dd HH:mm:ss . . YYYY-MM-dd HH:mm:ss
9 Feed_code_2 Failed Rows: XX Failed Rows: XX
Feed_code_1 — . YYYY-MM-dd HH:mm:ss
Fg_2 Feed_code_3 @ YYYY-MM-dd HH:mm:ss @ . Failed Rows: XX
Fg_3 Feed_code_5 (C) (©)
v

Figure 3.1: mockup of the monitoring page

17

3 — Lygos implementation

In particular, from the mockup represented in figure 3.1, it is possible to identify three
areas on which I focused my work, in temporal order, for the implementation of the Lygos
phase:

o The Feed monitoring section at the top of the mockup 3.1 is represented by a series
of cards, (one as example in the figure) each containing information on the Axyon
Al Feeds. Each card must associate all the Feature Groups used for the Feeds in
production.

o A Feature Group ingestion tracker table, located at the bottom of the mockup
3.1, is intended to provide further details about the Feature Groups, specifying in
which Feeds they are used.

In the "Historic" section of the table, it is expected to display the ingestion status
in the Feature Store of historical data related to Feature Groups, checking for the
presence or absence of failed rows.

In the "Live" section, on the other hand, the data ingestion status from the day
preceding the current date must be displayed, identifying any anomalies.

o The table displayed at the top right of the figure 3.1, which appears with a pop-up
window, shows the individual Feature Groups composition listing all the Features
that are part of it. This window appears upon clicking the name of a Feature Group
in the cards or in the table.

From an implementation point of view, regarding the backend side of the application, the
use of the Django framework allowed the creation of a single app called "lygos" within the
project, guaranteeing an organized and modular structure.

For this reason, a separate directory has been created for the monitoring page which con-
tains its own models, views, etc. Outside of this folder there are configuration files common
to all apps, such as "settings.py", with any models common to the entire project included
in the folder called "common".

The lygos app was generated using the specific command "python manage.py startapp ly-
gos", which automatically generated the basic structure, including the "models.py", "views.py"
and "urls.py" files. After creation, the lygos app was configured in the "settings.py" file in

the VINSTALLED APPS” section.

As for the frontend aspect of Lygos, a file named "lygos.vue" has been created inside the
"pages" folder. This file represents the graphical interface of the monitoring page, which
also makes use of components present in the "components" directory.

The codebase structure just described of this implementation phase, frontend and backend,
can be observed in appendix A.

18

N OO W N

3 — Lygos implementation

3.2 Feed monitoring

The data relating to the Axyon Al Feeds and the associated Feature Groups, to be in-
serted in the cards of the Feed monitoring section, are contained in the Datasmith ta-
ble ”sn_ datasmith_feeds in_feature groups”, whose structure can be analyzed in the
Django Model included by appendix B.

During the fetch phase on the frontend side of the "lygos.vue" page, data is requested
through an HTTP request performed using the Axios library. Axios provides a simple and
clean interface for making HTTP requests. It can be used to perform GET, POST, PUT,
DELETE and other requests. In this case it is used to make a GET request, the resulting
data from this request is inserted into the variable "fg_in_ feeds”.

async fetch () {
let [res_feeds, res_fgroups] = await Promise.all([
this.$axios.get("/api/vl/lygos/feeds-1ist"),
this.$axios.get("/api/vli/lygos/fg-ingest"),
D
this.fg_in_feeds = res_feeds.data;
this.tableData = res_fgroups.data;

Listing 3.1: fetch of lygos.vue page in Vue.js

The HTTP request is received on the backend side through the "feeds-list" url pattern,
which directs the HTTP request to the "feeds_list" view. The latter simply queries the
“sn_ datasmith_feeds in_feature groups” table via its Django Model and returns the
data to the frontend in the form of JsonResponse.

The query executed on the table groups the data by "feed code" and aggregates all the
Feature Groups by associating them with the corresponding "feed code".

From the user’s point of view, information on Axyon Al Feeds is presented through a
series of customized cards that slide within a group of slides, thus giving the end user the
possibility to navigate between the various cards, as clearly illustrated in the figure 3.2.

economicsTr economicsTr economicsTr economicsTr

Eurostoxx50IRelated forexirelated forexirelated energyContext

achnicalindic... forexirelated gdeqv1Context gdeqv1Context forexirelated

gdeqv1Context indexgovtbondTr indexgovtbondTr gdeqv1Context

Figure 3.2: Feeds monitoring section

Each card, representing a single Feed, can be selected as illustrated in the figure 3.2. When
a Feed is selected, the table in the "Feature Group ingestion tracker" section is filtered,
showing only the Feature Groups associated with that Feed.

19

© 0 O U W N

el
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25

3 — Lygos implementation

3.3 Feature Groups ingestion tracker

The table that monitors the ingestion status of Feature Groups in the AWS Feature Store
consists of several columns. The data for these columns is requested from the frontend side
in the "lygos.vue" page during the fetch phase through an HTTP request and is subse-
quently assigned to the "tableData'" variable, as shown in 3.1

The first two columns of the table provide information about Feeds that use a particular
Feature Group. This information is obtained through a query similar to the one performed
on the "sn_ datasmith_feeds_in_ feature_ groups" table in the previous section 3.2, except
that the data are grouped by 'fgname id" rather than "feed code'.

For the columns relating to data ingestion in the Feature Store, a query is executed on the
”sn__datasmith_ feature_groups” table using the Django Model specified in appendix B.
In particular, the columns relating to the name of the Feature Groups, the temporal snap-
shot of the historical and live data, as well as the number of rows that were not properly
ingested into the Feature Store, for both historical and live data, are selected.

This data is then processed to determine the status of the Feature Group, merged with the
first two columns obtained with the first query, and sent to the frontend as a JsonResponse.

fg_groups = get_feeds_in_feture_groups ("fg_name")
feature_groups_table = get_fg_ingest ()
fg_table = pd.merge(
feature_groups_table,
fg_groups,
left_on="fg_name_suffix",
right_on="fg_name_id",
how="outer",

)
fg_table["historical_status"] = fg_table.apply(
lambda row: "success--text"
if (row["historical_ingestion_snapshot"] and
row["historical_failed_rows"] == 0)
else (
"error--text"
if (
row["historical_ingestion_snapshot"]
and row["historical_failed_rows"] > 0
)
else "accent--text"
),
axis=1,
)

fg_table["live_status"] = fg_table.apply(

)

Listing 3.2: Django view "fg_ingest" in Python
20

3 — Lygos implementation

From the user’s perspective, Feature Groups ingestion information is displayed within a
Vuetify v-data-table component. Various modifications and customizations have been made
to this component in order to ensure optimal graphic presentation and complete flow of
the data within it, as can be seen in the figure 3.3.

cdsContext not used not ingested - 2024-01-16 04:05:00

cdsTrTechicalindicators not used not ingested - 2024-01-16 04:05:10

Target . _custom_equities 2023-09-2109:31:50 2023-09-20 21:40:27

c8_custom_equities
« clma_custom_equities
« energy_v3
s eurostoxx50

economicsTr not ingested - 2024-01-16 04:03:42

* energy_v3

; not ingested - 2024-01-16 04:06:43
msci_world

energyContext

Figure 3.3: Feature Groups ingestion tracker section

Historical case:
o Green -> time snapshot present, failed rows = 0
e Red -> time snapshot present, failed rows != 0
o Gray -> not ingested or otherwise

Live case:
o Green -> today’s time snapshot present, failed rows = 0
e Red -> today’s time snapshot present, failed rows != 0
* Red -> snapshot present but not from the current date

o Gray -> not ingested or otherwise

When a card is selected in the Feed monitoring section, the data present inside the variable
"tableData" is filtered, keeping only the Feature Groups associated with the selected Feed
active. This mechanism is also activated if you enter text in the search field at the top of
the table. However, it is important to note that the search is performed on all columns and
not just the one containing the Feature Group name.

21

=W N =

© 00 3 O Ot

© 00 g O U W N

—_
o

11
12
13
14
15

3 — Lygos implementation

3.4 Feature Groups composition

If a Feature Group is selected in one of the cards in the Feed monitoring section or directly
in one of the table rows in the ingestion tracker section, a pop-up with the description of the
Feature Group will be opened. Inside the opened window, there is a table that illustrates
the composition of the Feature Group, listing all the Features belonging to it.

Each Feature is accompanied by information such as the type of data it contains, the level
(discussed in section 1.3) and whether or not it is associated with a specific Feed.

The necessary data is requested from the frontend side on the Lygos page using the "Open-
Popup" method. This method is triggered when you select a Feature Group and make an
HTTP request, including the selected Feature Group as a parameter.

async OpenPopup(fg_i) {

var data = {};

data.fg_name_suffix = fg_i;

const response = await
this.$axios.$get ("/api/vl/lygos/fg-details", {
params: data });

this.popupData = response;

this.searchPopup = ’’;

this.isPopupOpen = true;

this.popupTitle = fg_ij;

Listing 3.3: OpenPopup method of lygos.vue page in Vue.js

The request is received from the backend side via the "fg-details" url pattern, which routes
the HTTP request to the "fg details" view.

The latter searches for the class relating to the selected Feature Group within the Datasmith
codebase, listing the description of all the Features contained in the class, as shown in 3.4.
At this point, the data is returned to the frontend using JsonResponse.

@api_view (["GET"])

def fg_details(request) -> JsonResponse:
fg = request.query_params.get("fg_name_suffix")
module_name = "datasmith.features." + fg
class_name = fg.capitalize()
module = importlib.import_module (module_name)
class_var = getattr(module, class_name)
feature = class_var ()
fg_descr = feature.describe ()
fg_descr = [{"feature_name": key, **value} for key, value in

fg_descr.items ()]

for f_dict in fg_descr:
if f_dict["feed_code"] is None:
f_dict["feed_code"] = "-"
return JsonResponse(fg_descr, safe=False)

Listing 3.4: Django view "fg_details" in Python

22

3 — Lygos implementation

In the GUI managed by the Vue page "lygos.vue", when the "isPopupOpen" variable be-
comes true, a Vuetify v-dialog component is triggered. This component acts as a container
for a v-data-table component, which lists all the Features found in the Datasmith codebase
class. Also in this case there is a text search field to filter the table.

r_rate_middle_roc_5
r_rate_middle_roc_60
tr_rate_middle_roc_90
r_rate_middle_roc_1_rolling_kurtosis_10

tr_rate_middle_roc_1_rolling_kurtosis_120

tr_rate_middle_roc_1_rolling_kurtosis_20

Figure 3.4: Feature Group composition section

23

24

Chapter 4

Byzantium implementation

As mentioned in the introductory chapter 1, the second objective that led Axyon Al to
the development of Talos is to make the process of generating the Genome of a dataset
faster and more robust, providing Datasmith users with a web application for selection and
choice of all the properties necessary for the creation of the final dataset.

The implementation phase of this goal during the project is called '"Byzantium" and will
be described in this chapter.

4.1 Mockup of pages in the web application

Initially, in the implementation phase of the project called Byzantium, in collaboration
with the Axyon Al team, we created a mockup for the graphical interface. The objective
was to incorporate all the properties necessary for the correct functioning of the Genome

generation process of a dataset. In this phase, the state is programmed on two main pages:

1) A first page for managing and displaying each Genome, created by one of the different
users, to be able to modify, delete, or test it through the test dataset generation.

&« > C @ www.talos.axyon.ai/lygos

Create new YAML

D Feed Code Nome Dataset Created By Updated By Status Last Update Action

1 Feed_code_1 dataset_123 User_1 User_1 Creation YYYY-mm-dd HH:mm:ss Download YAML v
Generate test Dataset
2 Feed_code_1 dataset_123 User_2 User_2 Completed YYYY-mm-dd HH:mm:ss
Check
3 Feed_code_2 dataset_123 User_3 User_2 Wip YYYY-mm-dd HH:mm:ss Edit

Delete

Figure 4.1: Genome generation index page

25

4 — Byzantium implementation

From the mockup illustration provided in the figure 4.1, it is evident that essential in-
formational data for each Genome are included in the table, with a specific indication of
whether a Genome has been subsequently modified from its creation and by which user.
In the "Action" column, various operations can be performed on the Genome. In particular,
by selecting the "Check" option, a pop-up window is opened, providing a summary of the
Genome and, if it exists, the generated test dataset view.

2) A second page for Genome generation, guiding the user through the creation process with
a step-by-step approach. The Genome creation page remains the same, but its components
alternate during the generation process to ensure the input of all necessary properties.

In the mockup figures 4.2 and 4.3 are visible two examples of some steps of the process.

&« > C @ www.talos.axyon.ai/byzantium

Step 1: Feed selection - Feed Code: feed code)

+ Date from: {date from}
+ Date to: {date to}

(e SE
* XContext
Y

+ Instruments
Spreading of things will happen in this process

Select Feed Dataset Name Date From Select To

TOED O D X

Description

I B

Figure 4.2: Genome generation step 1

&« > C @ www.talos.axyon.ai/byzantium

Step 2-4-5-7: Features Selection gjesc oo Paaceoel

+ Date from: {date from}
+ Date to: {date to}
X

(e > R

.Y
I CTEND CETD

« Instruments

<]

Feature_1
Feature_2
Feature_3

« Feature 4 * Feature 4 + Feature 4
« Feature 5 « Feature 5 « Feature 5
Feature_6 Feature_6 Feature_6

<J<J<]

<]

Feature_1
Feature_2
Feature_3

Feature_4 Feature_4 Feature_4
Feature_5 Feature_5 Feature_5
Feature_6 Feature_6 Feature_6

[<J<N<]

Figure 4.3: Feature selection step 2,4,5,7

26

4 — Byzantium implementation

On the right side of the page in the mockup, a representation of the Genome being generated
remains consistently visible, while in the center, the various steps of the process unfold.
Specifically, the steps that guide the user in generating a complete Genome are:

o Step 1: Feed Selection

e Step 2: Instrument related Features Selection
o Step 3: Instruments Mapping

o Step 4: Context Features Selection

o Step 5: Custom Context Features Selection

o Step 6: Context Assets Selection

o Step 7: Target Selection

o Step 8: Recap

From an implementation perspective, similarly to what has already been done in the Lygos
phase, concerning the backend of the application, the use of the Django framework has
allowed for the creation of a single app named "byzantium" within the project, ensuring an
organized and modular structure.

As for the frontend side of Byzantium, two files named "index.vue" and "create-genome.vue'
have been created within the "pages\byzantium" directory. The first file represents the
graphical interface of the monitoring page for each genome, while the second contains the
page that guides the user through the genome generation process. The latter extensively
utilizes components found in the "components\byzantium" directory to implement the var-
ious steps of the process.

The structure just described for this implementation phase, both for the frontend and the
backend, can be observed in appendix A.

27

4 — Byzantium implementation

4.2 Structure of a dataset Genome

Before going into the details of the implementation of the two pages illustrated in the
mockup of the previous section, it is essential to provide a more in-depth description of
what the Genome of a dataset represents in the Axyon Al development context and how
it is structured.

To generate a dataset useful for model development in Axyon Al, it is necessary to under-
stand several properties:

o Investible universe: identified by the Feed code, the investible universe defines the
set of potentially tradable assets (Instruments).

o Time period: specifies the time period that the dataset should cover.

» Dataset type: determines whether the dataset to be generated should be of the AvA
(Asset vs Asset) type or not.

o Instrument related Features: they specify the "instrument-related" Features that
are desired to be included in the dataset.

» Context Features: they specify the "context" Features that are desired to be in-
cluded in the dataset.

They can also be specified in this section the "instrument-related" Features that are
intended to be used as context Features (identified as "custom context Features"). In
this case it is necessary to specify which Instruments, associated with the Feature
Group, to use as a context. This choice is managed by Talos in step 6 (context assets
selection).

o Target: indicates the target Features in the case of training datasets.

o Included Instruments: provides the list of assets belonging to the selected Feed.

For the instrument-related Features, it is possible to include the "mapping" property for
each selected Feature Group in the Genome. This property is employed when you want to
incorporate Features of different instrument types respect to the one used for Instruments
identified by the "instruments" key inside the Genome.

The mapping relies on the structure of the "sn__instruments_ attributes" table (whose con-
figuration is outlined in the Django models in appendix B) to establish a link between
the two types of Instruments. Therefore, the mapping value must coincide with the "at-
tribute_code" of the mentioned table.

This information is input into a .yaml file, representing the DNA and identity of the
dataset to be generated. This file is called the dataset’s Genome, and once it’s ready, it is
possible to generate the actual dataset. The structure of the output .yaml file follows the
scheme described in the figure 4.4, but it can become a very long file, full of Features and
Instruments.

28

4 — Byzantium implementation

X:
feature-groupl:
features:
- 1st_feature
- 2nd_feature
mapping:
feature-group2:
features:
- featureA
- featureB
mapping: cds-to-equity
Y:
target_fg_1:
features:
- 1st target feature
- 2nd target features
X_context:
cx_1st_fg:
features:
- cx_feature_N
- cx_feature_M
feed_code: <feed code of the context fg>
instrument_type: <instrument type of the context fg>
cx_2nd_fg:
features:
- cx_featurel
- cx_feature2
- cx_feature3
instrument_type: <instrument type of the context fg>
instruments:
is_ava: True
dateFrom: <starting date>
dateTo: <ending date>
feedCode: <feed code>
instruments: # Llist of assets belonging to the selected feed code

Figure 4.4: Genome structure in a .yaml file

If intending to generate an ordinal dataset instead of AvA, the "is_ava' key can be removed
from the Genome. To create the Genome of a test dataset, as we mentioned in the previous
section, it is essential to specify a time period of just one day within the .yaml file.

29

© 0 N O U W N

— e e e
B W N~ O

4 — Byzantium implementation

4.3 Dataset Genome generation overview

To keep track of the data for each Genome created by Axyon Al users, a new table has
been created in the company’s database. The generation of this table was made possible
through a migration carried out via the Django Model contained in the "byzantium" app, as
shown below in 4.1. The most important column is represented by the "preview" attribute,
which is designed to contain all the properties of the Genome described in the section 4.2.

class TalosYaml (models.Model):
id = models.AutoField(primary_key=True, null=False)
feed_code = models.CharField(max_length=255, null=False)
name = models.CharField(max_length=255, null=False)
created_by = models.CharField(max_length=255, null=False)
updated_by = models.CharField(max_length=255, null=True)
status = models.CharField(max_length=255, null=False)
created_at = models.DateTimeField(null=False)
last_update = models.DateTimeField(null=True)

description = models.TextField(null=True)
preview = models.TextField(null=True)
class Meta:

managed = True

db_table = "talos_yaml"

Listing 4.1: Django Model in Python - bizantium directory

The data from the "talos_yaml" table is requested by the frontend in the "index.vue'
page during the retrieval phase through a GET HTTP request, performed using the Axios
library. The backend app simply receives the request and, through the "yaml list" view,
executes a read query on the table, returning the data to the frontend as a JsonResponse.

At this point, similar to what was done in the Talos monitoring page, the data is displayed
to the user within a Vuetify v-data-table component, which is customized to adapt to the
specific use case.

curostonsd (5018122073 Roberto 20231218 Roberto 20231229
Coeo e tars Landi 1029:20 Landi 14:15:47
Davide 20231218 Davide 20231218

Brembilla 13:22:.04 Brembilla 13:23:30
Davide 2023-12-20 Davide 2023-12-20

wip
Soeod a2 Brembilla 151322 Brembilla 1513:38

o600 ©oxx600.20.12. 2023 Davide 20231220 Davide WP 20231220
Grtiinaghe Brembilla 152537 Brembilla 152551

Stoxx600 10xx600.21_12 2023 Davide 2023-12-21 Davide WP 2023-12-21
SIOE0021T2- Brembilla 08:20:20 Brembilla 08:20:58

eurostoxx50 1oxx50_22 12 2023 Roberto 2023-12-22 Roberto Genome 2024-01-02
CUrOSTONER L2 T2 Landi 16:44:51 Landi Check 14:01:02

- o Camila 202401-02 i
commodities_index_futures commodities_index_futures_02_.. o Ve | | o} - &

ncauy

Figure 4.5: dataset Genome generation overview table

30

4 — Byzantium implementation

The "actions" column in the table shown to the user is adjusted based on the Genome
status, displaying various action possibilities.

WIP (Work in Progress): the Genome has been created and is present in the
database table, but it is not yet complete (there are some mandatory properties).
The possible actions are only "Edit" and "Delete".

Genome Ready: the Genome has been created, and all its fundamental properties
have been inserted. Therefore, all actions are available: "Edit", "Delete", "Download",
"Check" and "Generate Test Dataset'.

Generating Test Dataset: the process of generating the test dataset has been
initiated but is not yet completed.

Test Dataset Ready: the test dataset is ready, allowing all actions. In particular,
with "Check" it is possible to view the test dataset preview.

Test Dataset Failed: the generation of the test dataset was unsuccessful, but all
actions are still possible. With "Check" it will also be possible to view any error
messages collected during the generation process.

The possible action "Check', which we will also see better in the next paragraphs, allows
for a preview of the Genome created up to that point. In practice, as shown in the figure
4.6, it provides the same basic functionalities as the recap step that also concludes the
Genome generation process. However, in this case it serves the user to observe their own
work, as well as the work of other users, and potentially decide to modify it.

commodities_index_futures

2018-02-05

2023-12-31

Figure 4.6: Genome preview with "Check" action

By selecting the "CREATE NEW DATASET GENOME'" button (a v-btn component)
located at the top right of the table in the figure 4.5, the user is directed to the second
page of byzantium for creating a new Genome.

31

o~

4 — Byzantium implementation

4.4 Genome generation process

The creation of a new Genome, as well as the process of editing an existing Genome within
the table shown in the previous section, is entirely managed at the frontend level by the
"create-genome.vue" page. This page is responsible for presenting all available options to
the user regarding the information contained in the Genome structure, as detailed in 4.2.
From a graphical perspective, but not only, the page can be divided into three separate
but closely interconnected areas:

o The dynamic Genome recap, always present on the right side of the screen, allows
the user to monitor their choices in real-time. This functionality is handled by an
external component to the page, "Recap.vue," which enables the user to proceed or
go back in the Genome generation process.

It is called dynamic because it’s composed of various panels that automatically open
and close based on the progress status of the process. This allows the user to see the
relevant section of the process at any given time.

This component expands and fills the entire screen in the final phase of the process,
when the user is prompted, in step 8, to review the choices made and confirm the
completion of the process.

o The display and control of steps at the top of the screen are managed directly within
the page through a Vuetify v-stepper component, keeping track of the progress status
of the process. This section, during Genome creation, simply serves a display function.
However, during the editing of an existing Genome with a status of "Genome Ready",
it also serves a control function. This allows the user to directly select the desired
step without following the predefined order of steps.

o The selection of properties to include in the Genome, in the central part of the screen,
is managed by components external to the page that alternate depending on the step
the user chooses to be in. For this reason, an ad hoc component was created to manage
every single step listed in the mockup section 4.1.

import FeedSelection from
>/components/byzantium/FeedSelection.vue’

import FeatureSelection from
>/components/byzantium/FeatureSelection. vue’

import Recap from ’/components/byzantium/Recap.vue’

import Mapping from ’/components/byzantium/Mapping.vue’

import AssetsSelection from
’/components/byzantium/AssetsSelection.vue’

Listing 4.2: create-genome.vue imports

When transitioning from one step to another, whether during the creation phase via the
recap panel or through the stepper during the editing phase, a function in the frontend
page sends a POST HTTP request to the backend using the Axios library. This request is
processed by the Django views "yaml insert" and "yaml edit", which execute a query on
the "talos__yaml" table in the database to update or create the new Genome.

32

4 — Byzantium implementation

The transition from one step to another may not always be possible as some properties are
mandatory to create or modify a Genome. Specifically, the following are always required:
the Feed code of the investible universe, the name, the time period the dataset must cover,
at least one instrument-related Feature, and at least one target Feature. Mandatory fields
and steps are marked with an asterisk.

4.4.1 Step 1: Feed selection

In the first step of generating the dataset Genome, in addition to a brief description of
the process, the main fields such as the Feed, the name, the time period, and optionally, a
description of the dataset the user wants to create are required. This first step is visible in
the figure 4.7

*Instr. Related ~ Mapping Context Custom Context Assets * Target Recap

ftse100
Before generating a dataset, we need to know several properties of it, such as:

« Feed Code — The investable universe we are considering.
« Date From and Date To — The time period it should span
« The name we want to give to the dataset and (optionally) a brief description.

* X — The features we want to include. Mapping options must be inserted, which are used to concatenate features from 2024-01-02
feature groups of different instrument types respect to the main one of the selected feed.

« X Context — The context for the dataset. In this section, for instrument related feature groups (Custom Context), the
instruments we want to consider must be selected

Y — The targets of the dataset

The aforementioned information will be included in the dataset genome with a step-by-step process 2024-01-20

* Feed Code

ftse100 ftse100_16_01_2024

2024-01-02 G 2024-01-20

dimostrazione

Figure 4.7: step 1 - create Genome

If one of the required fields is missing during the transition to the next step, an error
message is displayed indicating which field has not been filled in, preventing the user
from proceeding further. The same would happen during the editing phase if one of the
mandatory fields were eliminated.

The list of Feeds available for selection is determined through a GET HTTP request when
fetching data by the "FeedSelection.vue" component.

On the backend side, this request is handled by the Django view "feeds_list", which queries
the "sn_datasmith feeds in_feature groups" table, just as it was done for the Feeds
monitoring page.

33

QU W N =~

N >

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

4 — Byzantium implementation

4.4.2 Step 2: instrument related Features selection

In the second step of generating the dataset Genome, users are asked to input instrument-
related Features by selecting from a series of Feature Groups represented through ver-
tically scrolling cards. The data within these cards is retrieved during the fetch of the
"FeatureSelection.vue" component through a GET HTTP request. On the backend, this
request triggers the Django view 'feature selection,” which in turn executes a query on
the "sn_ datasmith_ feature groups' table to obtain the desired Feature Groups.

In this case, only the Feature Groups with the same Feed code as the one of the Feed
chosen in step 1 or with null Feed code are selected.

Subsequently, utilizing the Datasmith codebase, all features belonging to the individual
Feature Groups are obtained. This information is then returned to the frontend via Json-
Response from the Django view found below 4.3.

@api_view (["GET"]1)
def feature_selection(request) -> JsonResponse:
"""Get the features given the input parameters.
Args:
request: rTequest containing the parameters featureType
and, optionally, currentFGs and feedCode

Returns:
JsonResponse: a dictionary containing the selected
feature groups
feature_type = request.query_params.get("featureType")
current_fgs = request.query_params.get("currentFGs")

if feature_type != "custom_context":
feedCode = request.query_params.get("feedCode")

else:
feedCode = None

feature_groups = get_feature_groups(feature_type, feedCode,
current_fgs)

fg_dir = os.path.dirname(features.__file__)
fg_list = [
file[:-3]
for file in os.listdir(fg_dir)
if file.endswith(".py") and file != "__init__.py"
]
feature_groups = (

feature_groups.query("fg_name_suffix, in, 0fg_list")
.apply(get_feature_group_description, axis=1)
.to_dict("records")

)

return JsonResponse (feature_groups, safe=False)

Listing 4.3: feature_ selection Django view

34

4 — Byzantium implementation

As can be seen in the figure 4.8, in the header of each card, along with the name of the
Feature Group, there are also icons that provide useful information to users.

Mapping Context Custom Context Assets * Target

Instrument Type
equity
features
- amihud_illiquidity_1...

features
amihud_illiquidity_10 beta_brent_10_relative_pct_rank - beta_brent_120_rela...
- beta_brent_240_rela...
amihud_illiquidity_10_relative_pct_rank beta_brent_120_relative_pct_rank - beta_brent_20_relati...

amihud_illiquidity_120 beta_brent_20_relative_pct_rank
features
amihud_illiquidity_120_relative_pct_rank beta_brent_240_relative_pct_rank - mkt_dispersion_sect...

-ri_close_roc_1_mea...

" . . . features
mkt_disp_sector_vs_mkt_disp_market_relative_... ri_close_roc_20 X
- ri_close_roc_5
mkt_dispersion_sector_vs_mkt_dispersion_mark... ri_close_roc_20_relative_pct_rank

ri_close_roc_1 ri_close_roc_5 features
-EPS_100_num_est_...
ri_close_roc_1_mean_sector ri_close_roc_5_relative_pct_rank

features

Figure 4.8: step 2 - instrument-related Features selection

In particular, hovering the mouse over the information icon allows users to read a de-
scription of the FG. The filter-shaped icon indicates that the Feature Group has the same
associated Feed code selected for the Genome being created, while the generic currency
symbol indicates that the Feature Group has conversion enabled, information retrieved
from the Datasmith codebase.

In some cases, there are many Feature Groups to choose from, so there are two filtering
options available to simplify selection for users. One involves a text search field that filters
the cards based on matches in the names of the Feature Groups and Features. The other is a
filter for instrument type, allowing users to select one or more instrument types from those
present in the Feature Groups. Each Feature Group indeed has an attribute for instrument
type within the "sn_ datasmith_feature groups" table.

These filters allow searching among all available cards, not just those shown on the screen
at that moment.

35

4 — Byzantium implementation

4.4.3 Step 3: instruments mapping selection

In the third step of generating a dataset’s Genome, users are prompted to input the map-
ping for the Feature Groups selected in the previous step that do not have the same
instrument type as the main instrument type of the chosen Feed code in step 1.

To achieve this, first, the main instrument types of the Feed (usually only one) are re-
trieved through an HTTP request managed by the "mapping" view, which operates on
the "sn_feed instrument" and "sn_ instrument' tables of the Axyon Al database. Subse-
quently, only the Feature Groups with an instrument type different from those retrieved
from the backend are shown to the user because they require a mapping operation.

Then, through a second HTTP request of type GET, the mapping options for all the
Feature Groups displayed to the user are obtained via the Django view "mapping options,"
which operates on the "sn_ instrument_ attribute" table, searching for a match with the
instrument types of the FG. The structure of these tables can be observed in appendix B.

v v ®]] ®]

* Feed * Instr. Related Mapping Context Custom Context Assets * Target Recap o
'eatures

- beta_brent_120_rela...
- beta_brent_240_rela...
- beta_brent_20_relati...

features
- mkt_dispersion_sect...
-ri_close_roc_1_mea...

features
future_ci_composed-cds -ri_close_roc_5

features
- EPS_100_num_est_...

- log_abs_cds_spread_equity_roc_20 features

-log_abs_cds_spread...
mapping
- future_ci_composed...

Figure 4.9: step 3 - Instruments mapping selection

From the user’s perspective, as illustrated in the figure 4.9, the Feature Groups for which
mapping is required are displayed one at a time through a card slider. This makes it clear
how many Feature Groups require mapping. When a mapping option is selected in the
selection component, the mapping key appears in the dynamic preview on the right side
of the page under the name of the selected Feature Group.

If for a Feature Group that requires mapping there are no mapping options available, the
user is shown a clear message inviting them to check if that Feature Group is necessary,
offering them the possibility to remove it because it probably shouldn’t have been inserted.

36

4 — Byzantium implementation

4.4.4 Step 4: context Features selection

In the fourth step of generating a dataset’s Genome, users are prompted to input 'context"
type features by selecting from a series of Feature Groups represented through vertical-
scrolling cards. A context Feature value changes for each date but remains the same for
each Instrument on that specific date.

The data contained in the cards is retrieved during the fetch of the "FeatureSelection.vue"
component through an HT'TP GET request, similar to what occurred in step 2. The main
difference is that, in this case, on the backend, only Feature Groups of type context are se-
lected from the "sn_ datasmith_ feature groups" table, as shown in the "feature_ selection’
view in 4.3.

v v v o []] o

* Feed *Instr. Related Mapping Confext Custom Context Assets *Target

Instrument Type

equity (+ 5 othe

features
- settlement_roc_20_r...

ri_close_roc_10_relative_mean settlement_roc_20_relative_mean
- settlement_roc_20_r...

ri_close_roc_10_relative_skewness settlement_roc_20_relative_skew

ri_close_roc_10_relative_std settlement_roc_20_relative_std features
-Ti_close_roc_10_rela...

ri_close_roc_5_relative_mean settlement_roc_5_relative_mean

features
- cross_std_price_clo...

cross_skew_price_close_roc_20 cds_roc_20_rel_mean_euro_futures
features

cross_skew_price_close_roc_5 cds_roc_20_rel_skew_euro_futures - cds_roc_20_rel_std_..

cross_std_price_close_roc_20 cds_roc_20_rel_std_euro_futures

cross_std_price_close_roc_5

qov_bond_roc_20_rel_mean_euro_futures aud_currency_NIKKO_NEWS_SENTIMENT

Figure 4.10: step 4 - context Features selection

As clearly seen in the example shown in the figure 4.10, when there are fewer than ten
Feature Groups, and therefore fewer than ten cards, they are not divided into separate
pages, allowing for complete scrolling on a single page.

The Features, both in this step and in the other Feature selection steps, can be individually
selected or the entire Feature Group can be chosen by clicking on the checkbox at the top
left of the card.

37

4 — Byzantium implementation

4.4.5 Step 5: custom context Features selection

In the fifth step of generating a dataset’s Genome, users are given the opportunity to include
additional context Features by selecting from a series of Feature Groups represented, like
in the previous steps, through vertical-scrolling cards.

The data contained within these cards is retrieved during the fetch of the "FeatureSelec-
tion.vue" component via an HTTP GET request, similar to what occurred in the previ-
ous step. The main difference is that, in this case, on the backend all Feature Groups
of instrument-related type are selected from the "sn_ datasmith_feature groups' table,
including those with a different Feed code than the one chosen for the Genome in step 1.

< v 7 g ® o ®

* Feed * Instr. Related Mapping Context istom Contexi Assets *Target Recap

Instrument Type

estimates (+ 11 othe: a

Select All

features
- settlement_roc_20_r...
- settlement_roc_20_r..

EPS_100_num_est_Q1_relative_pct_rank beta_brent_10_re!

EPS_100_num_est_Q2_relative_pct_rank beta_brent_120_r

features
-ri_close_roc_10_rela...

EPS_100_num_est_Q3_relative_pct_rank beta_brent_20_re
EPS_100_num_est_Q4_relative_pct_rank beta_brent_240_r

features
- cross_std_price_clo...

ri_close_roc_20 amihud_illiquidity_10

features
ri_close_roc_20_relative_pct_rank amihud_illiquidity_10_relative_pct_rank -cds._roc_20_rel_std....

ri_close_roc_5 amihud_illiquidity_120

ri_close_roc_5_relative_pct_rank amihud_illiquidity_120_relative_pct_rank

mkt_disp_sector_vs_mkt_disp_market_relative_..

Figure 4.11: step 5 - custom context Features selection

As shown in the example in the figure 4.11, in this step, there are no longer Feature Groups
with a null Feed code or one that matches the Feed code associated with the Genome
selection. Therefore, an additional filtering mode has been introduced to filter the cards
by Feed code, allowing users to choose from those associated with the available Feature
Groups in the cards. This significantly helps users because, by selecting all the Feed Codes
and not just one, the options for selection are broader.

The Features selected in this step are still part of the Genome’s contextual Features, so
they will be included in the "X Context" section of the dynamic preview on the right.
They are called "custom" because they originate as instrument-related Features and thus,
to be used as context, they require the selection of individual assets to be included in the
context in the next step.

38

4 — Byzantium implementation

4.4.6 Step 6: context assets selection

In the sixth step of generating a dataset’s Genome, after selecting the custom context
Features among the Feature Groups of instrument-related type, users are prompted to
input assets to include in the dataset for each chosen Feature Group in the previous step.
Users are then presented with a series of cards within a slider, one for each Feature Group
selected in step 5. This step is managed by the Vue component "AssetsSeletion.vue'.

To determine the assets to choose for each card, first, the Instrument types of each Fea-
ture Group are retrieved. Subsequently, an HTTP GET request is made to the backend,
providing the obtained list of Instrument types as a parameter.

The request is handled on the backend side by the Django view "assets selection', which
retrieves from the "sn instrument' table all the codes of the Instruments associated with
the received Instrument types as a parameter, grouping them by 'instrument type' to
ensure a list of codes of the Instruments (assets) for each Instrument type associated with
the Feature Groups.

These pieces of information are then returned to the frontend component "AssetsSele-
tion.vue", which provides them to users through a Vuetify component "v-autocomplete’,
making it easy for users to input assets which are to choose from hundreds of options.

7 v v v v o ®

* Feed *Instr. Related Mapping Context Custom Context Assets * Target Recap o
eatures

-ri_close_roc_10_rela...

features
- cross_std_price_clo...

equity

features
-cds_roc_20_rel_std_..

DSWS_EQ_11_XET features

- data_emd_excessret...

O DSWS_EQ_10X_GENOMICS_A

features
-ri_close_roc_1_dow...
-ri_close_roc_1_dow...
DSWS_EQ_1STCAPRYREITTST_UTS instrument_type
- equity
DSWS_EQ_31_GROUP instruments
-DSWS_EQ_11_XET

DSWS_EQ_3M
features

-log_abs_cds_spread...
- cds_equity_roc_20_...

DSWS_EQ_77_BANK

Figure 4.12: step 6 - context assets selection

As highlighted in figure 4.12, once a user selects an asset, it appears in the dynamic
display on the right within the desired Feature Group under the key "instruments". The
same happens for all the Feature Groups for which the user needs to input assets, which
in the example are 4, as indicated by the dots at the bottom of the slider.

39

4 — Byzantium implementation

4.4.7 Step T7: target selection

In the seventh step of generating the Genome of a dataset, users are prompted to input the
dataset’s target by selecting from a series of Feature Groups represented, as in the previous
steps, by vertically scrolling cards.

The data within these cards is retrieved during the fetch of the "FeatureSelection.vue'
component through an HTTP GET request, similar to what occurred in the previous
steps. The main difference here is that, on the backend, all instrument-related Feature
Groups from the "sn_ datasmith feature groups” table are selected, provided they have
the "is_target" attribute set to 1 and a Feed code that is either null or matches the one
corresponding to the chosen Genome’s Feed.

v v v v v v

* Feed *Instr. Related ~ Mapping Context Custom Context Assets

Instrument Type

equity (+ 2 others

Feature Group with a feed code that matches the selected feed code for the YAML

target_absolute_ri_close_roc_60 target_absolute_ri_close_roc_20
target_one_hot_ri_close_roc_60 target_absolute_ri_close_roc_5
target_pet_rank_ri_close_roc_60 target_absolute_ri_close_roc_60

target_one_hot_ri_close_roc_20
features

-target_absolute_ri_clo...
-target_absolute_ri_clo...

target_absolute_ri_settlement_roc_2
target_absolute_ri_settlement_roc_20
target_absolute_ri_settlement_roc_3

target_absolute_ri_settlement_roc_5

Figure 4.13: step 7 - target selection

As can be seen in the example figure 4.13, the available Feature Groups for selecting target
Features are limited compared to previous steps, therefore there is no longer pagination or
a Feed code filter, which would be unnecessary.

To further clarify, when a Feature is selected, the "FeatureSelection.vue" component sends
the selection data to the page containing the component, in this case "create-genome.vue'.
It is then the responsibility of the main page to handle the Feature selection by inserting
it into the "yaml" variable, which contains all the properties of the Genome.

40

4 — Byzantium implementation

4.4.8 Step 8: recap

In the final step of the Axion Al dataset Genome generation process, a presentation of
the dynamic recap that appears in all steps is provided, but in a more comprehensive and
detailed manner. This includes the panel regarding the dataset type (AvA or otherwise) and
the list of Instruments associated with the selected Feed for dataset generation through the
Genome. In this step, users can confirm the completion of the process or go back through
the various steps to make any necessary changes.

* Instr. Related Mapping Context Custom Context Assets * Target

ftse100

2024-01-02

2024-01-20

Figure 4.14: step 8 - recap

By selecting the confirmation option, the user is instead redirected to the management
page "index.vue" described in section 4.3.

Once users return to the "dataset Genome generation overview' page, they have the option
to modify an existing Genome, including one that has just been confirmed. In this case, on
the "create-genome.vue" page, there is a "mounted()" section responsible for retrieving data
from the "talos_yaml" table. This is necessary to display the previously selected properties
and, if needed, make changes.

41

N OO W N

©

10
11
12
13
14

15
16
17
18
19
20

21
22
23

24
25
26

27
28
29

4 — Byzantium implementation

4.5 Test dataset generation

As illustrated earlier in section 4.3, on the page managed by "index.vue" relating to the
overview of Dataset Genome generation, users can manage each Genome created. Specifi-
cally, various actions can be performed on the Genome based on its current status.

When the Genome’s status is "Genome Ready," users can initiate the test dataset generation
process. Similarly to the other steps, user selection triggers an HT'TP request to the backend
of the application, containing the identifying code of the Genome for which the dataset is to
be generated. This request is handled on the backend by the Django view "test_dataset’,
which retrieves all necessary data from the "talos yaml" table, including the Genome’s
structure. Subsequently, as evident in the view’s code 4.4, two separate folders are created:
one to contain the test dataset in parquet format and another to contain the .txt file
tracking any errors during the dataset generation process.

def test_dataset(request) -> JsonResponse:
id = request.query_params.get("id")
row = get_yaml_from_id(id)

preview_json = json.loads(row.preview)

preview_json["dateTo"] = preview_json["dateFrom"]

base_folder = "/home/axyon/talos/backend/outputs/"

output_folder = os.path.join(base_folder, row.feed_code,
"logs")

output_file = os.path.join(output_folder, row.name + ".txt")

if not os.path.exists(output_folder):
os.makedirs (output_folder)

df = None
edit_talos_yaml_status(id, "Generating,Test,Dataset")
try:

with open(output_file, "w") as log_file,
contextlib.redirect_stdout (
log_file
), contextlib.redirect_stderr(log_file):
df = generate_dataset(preview_json, False)
except Exception as e:
with open(output_file, "a") as log_file:
log_file.write(f"Erroruduringugenerate_dataset:u
{str(e)}\n")
edit_talos_yaml_status (id, "Test_Dataset_ Failed")
if isinstance(df, DataFrame):
output_folder = os.path.join(base_folder, row.feed_code,
"test_datasets")
if not os.path.exists(output_folder):
os.makedirs (output_folder)
output_file = os.path. join(output_folder, row.name +
".parquet")
df . to_parquet (output_file)
edit_talos_yaml_status (id, "TestyDataset Ready")
return JsonResponse(id, safe=False)

Listing 4.4: test_ dataset Django view
42

4 — Byzantium implementation

The test dataset generation process utilizes the entrypoint provided by the Datasmith
'generate_dataset' command, which receives the Genome’s structure as a parameter and
accesses the AWS SageMaker Feature Store directly to retrieve all data related to the
Features included in the Genome. To accomplish this, Talos has access to Datasmith’s
codebase to execute the dataset generation command, as was explained in 2.2.

This process returns the dataset in dataframe format, which is then converted to parquet
format. Finally, based on the success or failure of the dataset generation process, the
Genome’s status is updated to either "Test Dataset Ready" or "Test Dataset Failed".

At this point, in the overview screen of Dataset Genome generation, the Genome’s status
will appear with one of these two options.

Through the "Check" action, the files generated in the two created folders are retrieved via
an HT'TP request, and users will be able to explore the test dataset in tabular format in the
event of a successful generation process, or read the error or warning messages generated
by the process in case of failure, as shown in the figure 4.15.

2018-02-05 FUTURE_COMPOSED_TTFGAS_INDEX 0.5025100111961365
2018-02-05 FUTURE_COMPOSED_RBOB_INDEX 0.5025100111961365
2018-02-05 FUTURE_COMPOSED_NATGAS_INDEX 0.5025100111961365

2018-02-05 FUTURE_COMPOSED_POWERDE_INDEX_C 0.5025100111961365

2018-02-05 FUTURE_COMPOSED_BRENT_INDEX 0.5025100111961365

2018-02-05 FUTURE_COMPOSED_POWERDE_INDEX_Q 0.5025100111961365

2018-02-05 FUTURE_COMPOSED_GASOLINE_INDEX 0.5025100111961365

2018-02-05 FUTURE_COMPOSED_POWERDE_INDEX_M 0.5025100111961365

Rows perpage: 10 +

Figure 4.15: "Check" action - test dataset

43

44

Chapter 5

Achieved results

At the end of the internship and the drafting of the thesis, it is advisable to conduct a
thorough analysis of the work done and the results achieved. This analysis not only includes
the aspects of the web application implemented personally but also the functionalities, only
briefly mentioned in the introductory chapter, that have been developed in collaboration
with the Axyon AI team and to which I have also made a personal contribution.

5.1 Evaluation of the proposed solutions

In the thesis work, the aspects managed by the Axyon team were briefly mentioned, which
involve the LDAP (Google) integration to enable access to the web application for com-
pany users and the subsequent implementation of custom permissions for the use of Talos
functionalities. This aspect is crucial in the development process as it allows only certain
users to access the application fully, while others can only use some functionalities.

The solutions proposed for this application management have proven effective and currently
allow for the control and monitoring of Talos usage. However, regarding the login graphical
interface, there is still room for improvement to align it with other usage pages.

The implementation choices made at the beginning of the internship, concerning the frame-
works used and the structure of the pages outlined in the application mockup, have proven
to be effective overall. The two main frameworks utilized, Django and Nuxt, have ensured
modularity and flexibility in developing Talos. The division of the project between cre-
ating Django apps on the backend and crafting individual pages or Vue components on
the frontend has facilitated optimal and transparent organization. Thanks to the exten-
sive documentation of the frameworks, I was able to progress quickly in their utilization,
focusing immediately on the functionalities to be implemented.

The main challenges encountered during the implementation stemmed from the need to
handle large volumes of data frequently requested via HTTP requests from the frontend
to the backend, data that then had to be displayed to the user on the graphical interface
promptly.

Regarding the number of requests, it emerged that often the requested data remained
unchanged, or the same request was made repeatedly during the application’s usage.

45

5 — Achieved results

To address this issue, we adopted caching for certain URLs, as can also be observed
in appendix B. In Django, it is indeed possible to implement URL caching using the
"cache_page" decorator. This setup allows storing the entire view in the cache for each
request, skipping the computation of the view if a cached version is available and valid.
This solution has helped reduce the load on the application’s backend and the number of
database accesses, while keeping some views cached in memory for 15 minutes.

Regarding the management of the large amount of data to be displayed, this was particu-
larly evident in the "FeatureSelection.vue" component, especially when the number of cards
increased significantly, as in step 6, but not only.

To address this challenge, I explored several solutions before adopting the aforementioned
pagination of Feature Groups. This approach allows the user to view ten items per page
and navigate between pages to view more. It is an effective solution that has been shared
within the team.

A proposed solution that still needs some improvement is the header of the card, where
the name of the FG is displayed along with some informative icons for the user. There are
cases where the names of Feature Groups exceed the available space, and the positioning
of the icons still raises some concerns among users. Therefore, while using the application,
the best solution to adopt in the future will be identified.

An adopted solution, which I consider effective but believe can be further improved upon
personally, concerns the display of possible actions on an existing Genome in the Genome
Overview screen managed by the "index.vue" page 4.3. The current solution is not the only
one I have developed, but in collaboration with the Axyon AI Team, we have decided to
evaluate user feedback on the use of Talos before making a final decision.

46

5 — Achieved results

5.2 Comparison: initial objectives versus results

The initial goal of the project was to monitor and support the machine learning dataset
generation process managed by Datasmith through the design and implementation of a
web application. Specifically, the aim was to monitor the historical and live ingestion of
Feature Groups into the AWS SageMaker Feature Store, making the information available
and clear to all Datasmith users and facilitating the identification of any errors in data
ingestion. Additionally, the objective was to enhance the efficiency of the dataset Genome
generation process by allowing users to select and configure all necessary properties to
create the final dataset, and providing a tool for verifying the dataset content to analyze
financial time series within it.

These objectives were pursued and achieved through the Lygos and Byzantium phases,
carefully outlined in the thesis document, leading to the development of a web application
named Talos. This application integrates into Axyon’s Al model development process,
making the generation of datasets for machine learning more efficient.

Thanks to the implementation of Talos, every Datasmith user, whether they are a quant
analyst, software engineer, or data engineer, now has the ability to easily browse the avail-
able Features in the Feature Store and, if necessary, initiate the creation of a dataset.
Originally, creating a dataset required multiple corrective iterations on the Genome and,
being a manual operation, was inevitably prone to numerous errors. This process has now
significantly improved in terms of time efficiency and reducing the number of iterations
required to obtain a machine learning dataset ready for AI model production or internal
experiments, thus also resulting in an enhancement of financial time series analysis.

An integral part of the web application development, and therefore included in the project
objectives, was the creation of backend functionality tests for Talos using the Django frame-
work. Django tests consist of a series of automated procedures executed to verify that
various components of the application, such as models and views, are implemented and
functioning correctly.

Tests related to the Lygos phase have been implemented and integrated into the project’s
automated deployment pipeline, while the same process could not be completed for the
Byzantium phase due to time constraints. This will be an area to focus on later.

47

48

Chapter 6

Conclusions & future prospects

In conclusion, the development of the Talos web application represents a significant ad-
vancement within the corporate context of Axyon Al, providing an intuitive and efficient
user interface to streamline the dataset generation process for training machine learning
models. However, despite the significant progress made so far with Talos, there are still
multiple perspectives for development and improvement in the future, partly already men-
tioned previously. Some of the areas of interest for future development include:

o Improving the user experience by continuing to work on the graphical interface to
make it even more intuitive, user-friendly, and in line with users’ needs.

e Developing comprehensive and structured Django tests to ensure the proper function-
ing of the application over time, even with the addition of new functionalities.

o Implementing new functionalities to make Talos increasingly integrated with the evo-
lution of the Datasmith project.

In particular, with the Axyon team, two possible new work phases have already been defined
to be scheduled in the company’s Product Backlog, which would represent a significant
increase in value:

» Constantinople: making Talos capable of triggering the full dataset generation
script, not just the test one, to complete the process managed by Datasmith.

o Istanbul: managing the ingestion of Features on the Feature Store in real-time and
allowing Talos users to perform quality checks on the generated dataset viewing the
output. The mentioned checks have been developed in Datasmith 1.2.

Ultimately, Talos represents an important resource for Axyon Al and has the potential
to continue evolving and adapting to the changing needs of the industry. With ongoing
commitment to development and optimization, Talos can make a significant contribution
to Axyon AI’s mission of providing innovative and high-quality solutions in the field of
machine learning and financial data analysis.

49

50

Appendix A

Codebase

v TALOS-DEV
v .docker
v aws
© _gitignore
credentials.example
v bin
v deployment_scripts
> target
$.env.example
$ auto_deploy.sh

deployer

$ prepare_env.sh
$ run_frontend.sh
& backend
& frontend
> backend
> frontend

$.env.example

© _gitignore

¥ _gitlab-ci.yml

© _gitmodules

©® CHANGELOG.md

% docker-compose.yml

® README.md
requirements.txt

config.yaml.example

@ deploy_entrypoint.py

@ add_django_secret.py

structure

v backend
> byzantium
v common
@ _init_.py
@ db_queries_models.py
@ models.py
v config
@ _init_.py
asgi.py
settings.py
urls.py
@ wsgi.py
Vv etc

LU U]

config.yml.example
v lib
> classes
@ utils.py
> lygos
V runners
@ test_runner.py
v users
@ router.py
@ urls.py
@ views.py
© _gitignore
® manage.py
pytest.ini

51

v backend v frontend
v byzantium Vv assets
v migrations Vs
L # styles.
@ _init_py St?’ s
L ¢ variables.scss
@ 0001 _initial.py
\ components
@ 0002_make_talosyaml_ “b .
yzantium
@ _init_py V AssetsSelection.vue
@ admin.py V FeatureSelection.vue
@ apps.py V FeedSelection.vue
@ models.py V Mapping.vue
@ tests.py V Recap.vue
@ urls.py V CustomCard.vue
@ utils.py V NuxtLogo.vue
& i V Tablevue
views.
Py V Tutorial.vue
> G V VuetifyLogo.vue
> config > layouts
> etc v pages
> lib ~ byzantium
v lygos V create-genome.vue
v fixtures V index.vue
{} my_fixturejson V indexvue
. q V login.vue
Vv migrations
L V lygos.vue
@ _init_.py i
~ > plugins
“ 7|n|T7.py \ static
@ admin.py % axyonpng
@ apps.py * favicon.ico
@ models.py intro.txt
2 test.py 2 v.png
2 urls.py ‘@ vuetify-logo.svg
2 views.py > store
> $.env.example
runners o o
.giti
> users 9! |gnorg .
o giti Js nuxt.configjs
-gitignore {} package-lockjson
* managepy {} packagejson
P ® README.md

I R

© 0 g O Ot

10
11
12
13
14

15
16

17

18

19

20

21
22

23

24

Appendix B

Django models

from django.db import models

class SnDatasmithFeedsInFeatureGroups (models.Model):

fg_name = models.OneToOneField(’SnDatasmithFeatureGroups’,
models .DO_NOTHING, db_column=’fg_name’, primary_key=True)
The composite primary key (fg_mname, feed_code) found,
that is mnot supported. The first column is selected.
feed_code = models.CharField(max_length=255)

class Meta:

managed = False
db_table = ’sn_datasmith_feeds_in_feature_groups’
unique_together = ((’fg_name’, ’feed_code’),)

class SnDatasmithFeatureGroups (models.Model):

fg_name_suffix = models.CharField(primary_key=True,
max_length=255)
instrument_type = models.CharField(max_length=255)
description = models.CharField(max_length=128, blank=True,
null=True)
feature_group_path = models.CharField(max_length=255)
fg_type = models.ForeignKey(’SnDatasmithFeatureGroupTypes’,
models .DO_NOTHING, db_column=’fg_type’, blank=True,
null=True)
data_provider = models.CharField(max_length=255)
feed_code = models.CharField(max_length=64, blank=True,
null=True)
is_target = models.IntegerField()
complementary_instrument_types =
models.CharField (max_length=500, blank=True, null=True)
historical_ingestion_snapshot =
models.DateTimeField (blank=True, null=True)
historical_failed_rows = models.IntegerField(blank=True,
null=True)

52

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

48

49
50

51

52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67

B — Django models

lookback_window = models.IntegerField(blank=True, null=True)

live_ingestion_snapshot = models.DateTimeField(blank=True,
null=True)
live_failed_rows = models.IntegerField(blank=True, null=True)

ingestable = models.IntegerField ()

class Meta:
managed = False
db_table = ’sn_datasmith_feature_groups’

class SnDatasmithFeatureGroupTypes (models.Model):

fg_type = models.CharField(primary_key=True, max_length=100)
record_identifier = models.CharField(max_length=255)

class Meta:
managed = False
db_table = ’sn_datasmith_feature_group_types’

class SnInstrument (models.Model):

instrument_code = models.CharField(primary_key=True,
max_length=128)

instrument_type = models.CharField(max_length=32)

currency_code = models.CharField(max_length=32)

instrument_source = models.CharField(max_length=32,
blank=True, null=True)

dataprovider_main = models.CharField(max_length=128,
blank=True, null=True)

bloomberg_code = models.CharField(max_length=128)

tr_code = models.CharField(max_length=128, blank=True,
null=True)

aa_code = models.CharField(max_length=128, blank=True,
null=True)

name = models.CharField(max_length=256)

instrument_sector_code = models.CharField(max_length=128)

instrument_subsector_code = models.CharField(max_length=45)

asset_class_code = models.CharField(max_length=128,
blank=True, null=True)

sector_code = models.CharField(max_length=32)

instrument_index_code = models.CharField(max_length=128)

update_enabled = models.IntegerField()

update_datetime = models.DateTimeField(blank=True, null=True)

update_last = models.DateField(blank=True, null=True)

(#contimue with more)
class Meta:

managed = False
db_table = ’sn_instrument’

53

68
69

70
71
72

73
74
75
76
7
78
79
80

81
82

83
84
85
86
87

B — Django models

class SnFeedInstrument (models.Model):
feed_code = models.CharField(primary_key=True, max_length=64)
The composite primary key (feed_code, instrument_code)
found, that ts mnot supported. The first column is selected.
instrument_code = models.CharField(max_length=128)
is_target = models.IntegerField(blank=True, null=True)
quality_score = models.DecimalField(max_digits=10,
decimal _places=2)

class Meta:

managed = False
db_table = ’sn_feed_instrument’
unique_together = ((’feed_code’, ’instrument_code’),)

class SnInstrumentAttribute (models.Model):

instrument_code = models.CharField(primary_key=True,
max_length=128) # The composite primary key
(instrument_code, attribute_code) found, that <s not
supported. The first column is selected.

attribute_code = models.CharField(max_length=128)

attribute_value = models.CharField(max_length=128,
blank=True, null=True)

class Meta:

managed = False
db_table = ’sn_instrument_attribute’
unique_together = ((’instrument_code’, ’attribute_code’),)

Listing B.1: Django models in Python code - common directory

54

N O U s W N

U W N =

(@]

10

11
12

13

Appendix C

Django urlspatterns

from django.urls import path
from . import views

urlpatterns = [
path("feeds-1list", views.feeds_list, name="feeds-list"),
path("fg-ingest", views.fg_ingest, name="fg-ingest"),
path("fg-details", views.fg_details, name="fg-details")]

Listing C.1: urls.py in Python code - lygos app Django

urlpatterns = [
path("yaml-1list", views.yaml_list, name="yaml-1list"),
path("yaml-insert", views.yaml_insert, name="yaml-insert"),
path("yaml-edit", views.yaml_edit, name="yaml-edit"),
path("download-yaml", views.download_yaml,

name="download -yaml"),
path("delete-yaml", views.delete_yaml, name="delete-yaml"),
path("mapping", cache_page (60%*15) (views.mapping),
name="mapping"),
path("mapping-options",
cache_page (60%*15) (views .mapping_options),
name="mapping-options"),
path("features-selection",
cache_page (60%15) (views.feature_selection),
name="features-selection"),
path("assets-selection",
cache_page (60%15) (views.assets_selection),
name="assets-selection"),

path("test-dataset", views.test_dataset, name="test-dataset"),

path("test-dataset-view", views.test_dataset_view,
name="test-dataset-view"),

path("instruments", cache_page (60*15) (views.instruments),

name="instruments") ,]

Listing C.2: urls.py in Python code - byzantium app Django

55

References

[1] Axyon Al. 'OUR METHODOLOGY'. azxyon.ai. (accessed Jan. 9, 2024). URL: https:
//axyon.ai/technology#methodology.

[2] Amazon Web Services. "Amazon S3’ aws.amazon.com. (accessed Jan. 15, 2024). URL:
https://aws.amazon.com/s3/.

[3] Amazon Web Services. 'Amazon SageMaker Feature Store’ aws.amazon.com. (ac-
cessed Jan. 15, 2024). URL: https://aws.amazon.com/sagemaker/feature-store/.

[4] Atlassian. 'Jira Software’ www.atlassian.com. (accessed Jan. 15, 2024). URL: https:
//www.atlassian.com/software/jira.

[5] S.C Evercoder Software S.R.L. 'mogqups’ moqups.com. (accessed Jan. 15, 2024). URL:
https://moqups.com/.

[6] Docker Inc. 'what is a container’ docker.com. (accessed Jan. 15, 2024). URL: https:
//www.docker.com/resources/what-container/.

[7] DBeaver Corporation. 'DBeaver Documentation’ dbeaver.com. (accessed Jan. 15,
2024). URL: https://dbeaver.com/docs/dbeaver/.

[8] GitLab B.V. 'Why GitLab’ about.gitlab.com. (accessed Jan. 15, 2024). URL: https:
//about.gitlab.com/why-gitlab/.

9] Ken Schwaber and Jeff Sutherland. "The 2020 Scrum GuideTM'. scrumguides.org.
(accessed Jan. 15, 2024). URL: https://scrumguides.org/scrum-guide.html.

[10] Scrum.org. 'What is Scrum?’ scrum.org. (accessed Jan. 15, 2024). URL: https://

www.scrum.org/resources/what-scrum-module.

[11] Microsoft. "Microservices architecture’ learn.microsoft.com. (accessed Jan. 15, 2024).
URL: https://learn.microsoft.com/it-it/dotnet/architecture/microservices/
architect-microservice-container-applications/microservices-architecture.

[12] Django Software Foundation. 'Documentation’ docs.djangoproject.com. (accessed Jan.
17, 2024). URL: https://docs.djangoproject.com/en/5.0/.

[13] Medium. 'Django MVT Architecture’ medium.com. (accessed Jan. 17, 2024). URL:
https://medium. com/@CodeMaple/understanding-django-mvt-architecture-
and-view-functions-django-full-course-for-beginners-lesson-39c8da093b44.

[14] Evan You. ’Introduction’ vuejs.org. (accessed Jan. 17, 2024). URL: https://vuejs.
org/guide/introduction.html.

[15] Nuxt. 'Introduction’ nuzt.com. (accessed Jan. 17, 2024). URL: https://nuxt.com/
docs/getting-started/introduction.

57

https://axyon.ai/technology#methodology
https://axyon.ai/technology#methodology
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/feature-store/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://moqups.com/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://dbeaver.com/docs/dbeaver/
https://about.gitlab.com/why-gitlab/
https://about.gitlab.com/why-gitlab/
https://scrumguides.org/scrum-guide.html
https://www.scrum.org/resources/what-scrum-module
https://www.scrum.org/resources/what-scrum-module
https://learn.microsoft.com/it-it/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-architecture
https://learn.microsoft.com/it-it/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-architecture
https://docs.djangoproject.com/en/5.0/
https://medium.com/@CodeMaple/understanding-django-mvt-architecture-and-view-functions-django-full-course-for-beginners-lesson-39c8da093b44
https://medium.com/@CodeMaple/understanding-django-mvt-architecture-and-view-functions-django-full-course-for-beginners-lesson-39c8da093b44
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://nuxt.com/docs/getting-started/introduction
https://nuxt.com/docs/getting-started/introduction

REFERENCES

[16] LLC KBall. "7 Frontend Architecture Lessons From Nuxt.js’ zendev.com. (accessed
Jan. 17, 2024). URL: https://zendev.com/2018/09/17/frontend-architecture-
lessons-from—nuxt-js.html.

[17] Vuetify. 'Introduction’ v2.vuetifyjs.com. (accessed Jan. 17, 2024). URL: https://v2.
vuetifyjs.com/en/introduction/why-vuetify/#getting-started.

[18] Atlassian. "Microservices architecture’ atlassian.com. (accessed Jan. 15, 2024). URL:
https://www.atlassian.com/it/microservices/microservices-architecture.

58

https://zendev.com/2018/09/17/frontend-architecture-lessons-from-nuxt-js.html
https://zendev.com/2018/09/17/frontend-architecture-lessons-from-nuxt-js.html
https://v2.vuetifyjs.com/en/introduction/why-vuetify/#getting-started
https://v2.vuetifyjs.com/en/introduction/why-vuetify/#getting-started
https://www.atlassian.com/it/microservices/microservices-architecture

	List of Figures
	Listings
	List of Acronyms
	Introduction
	Presentation of Axyon AI
	Contextualization of the project
	Role and functions of Datasmith in Axyon AI
	Objectives of Talos - web Datasmith
	Tools

	Analysis and methodology
	Work plan according to the Scrum methodology
	Talos structure and architecture
	Technologies and framework used - backend side
	Technologies and framework used - frontend Side

	Lygos implementation
	Mockup of the page in the web application
	Feed monitoring
	Feature Groups ingestion tracker
	Feature Groups composition

	Byzantium implementation
	Mockup of pages in the web application
	Structure of a dataset Genome
	Dataset Genome generation overview
	Genome generation process
	Step 1: Feed selection
	Step 2: instrument related Features selection
	Step 3: instruments mapping selection
	Step 4: context Features selection
	Step 5: custom context Features selection
	Step 6: context assets selection
	Step 7: target selection
	Step 8: recap

	Test dataset generation

	Achieved results
	Evaluation of the proposed solutions
	Comparison: initial objectives versus results

	Conclusions & future prospects
	Codebase structure
	Django models
	Django urlspatterns
	References

